skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lowers, Heather"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Atmospheric particulate matter (PM) as light‐absorbing particles (LAPs) deposited to snow cover can result in early onset and rapid snow melting, challenging management of downstream water resources. We identified LAPs in 38 snow samples (water years 2013–2016) from the mountainous Upper Colorado River basin by comparing among laboratory‐measured spectral reflectance, chemical, physical, and magnetic properties. Dust sample reflectance, averaged over the wavelength range of 0.35–2.50 μm, varied by a factor of 1.9 (range, 0.2300–0.4444) and was suppressed mainly by three components: (a) carbonaceous matter measured as total organic carbon (1.6–22.5 wt. %) including inferred black carbon, natural organic matter, and carbon‐based synthetic, black road‐tire‐wear particles, (b) dark rock and mineral particles, indicated by amounts of magnetite (0.11–0.37 wt. %) as their proxy, and (c) ferric oxide minerals identified by reflectance spectroscopy and magnetic properties. Fundamental compositional differences were associated with different iron oxide groups defined by dominant hematite, goethite, or magnetite. These differences in iron oxide mineralogy are attributed to temporally varying source‐area contributions implying strong interannual changes in regional source behavior, dust‐storm frequency, and (or) transport tracks. Observations of dust‐storm activity in the western U.S. and particle‐size averages for all samples (median, 25 μm) indicated that regional dust from deserts dominated mineral‐dust masses. Fugitive contaminants, nevertheless, contributed important amounts of LAPs from many types of anthropogenic sources. 
    more » « less
  2. Abstract Tellurium-rich (Te) adularia-sericite epithermal Au-Ag deposits are an important current and future source of precious and critical metals. However, the source and evolution of ore-forming fluids in these deposits are masked by traditional bulk analysis of quartz oxygen isotope ratios that homogenize fine-scale textures and growth zones. To advance understanding of the source of Te and precious metals, herein, we use petrographic and cathodoluminescence (CL) images of such textures and growth zones to guide high spatial resolution secondary ion mass spectroscopy (SIMS) oxygen isotope analyses (10 µm spot) and spatially correlated fluid inclusion microthermometric measurements on successive quartz bands in contemporary Te-rich and Te-poor adularia-sericite (-quartz) epithermal Au-Ag vein deposits in northeastern China. The results show that large positive oxygen isotope shifts from –7.1 to +7.7‰ in quartz rims are followed by precipitation of Au-Ag telluride minerals in the Te-rich deposit, whereas small oxygen isotope shifts of only 4‰ (–2.2 to +1.6‰) were detected in quartz associated with Au-Ag minerals in the Te-poor deposits. Moreover, fluid-inclusion homogenization temperatures are higher in comb quartz rims (avg. 266.4 to 277.5 °C) followed by Au-Ag telluride minerals than in previous stages (~250 °C) in the Te-rich deposit. The Te-poor deposit has a consistent temperature (~245 °C) in quartz that pre- and postdates Au-Ag minerals. Together, the coupled increase in oxygen isotope ratios and homogenization temperatures followed by precipitation of Au-Ag tellurides strongly supports that inputs of magmatic fluid containing Au, Ag, and Te into barren meteoric water-dominated flow systems are critical to the formation of Te-rich adularia-sericite epithermal Au-Ag deposits. In contrast, Te-poor adularia-sericite epithermal Au-Ag deposits show little or no oxygen isotope or fluid-inclusion evidence for inputs of magmatic fluid. 
    more » « less